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ABSTRACT  1 

Eye tracking measures, such as gaze locations, play a vital role in understanding the visual attention of 2 

drivers, providing insights into an individual’s driving skills and fitness to drive. Numerous studies have 3 

used eye-tracking data to analyze driving behaviors under various scenarios. Yet, these methods often 4 

either rely on aggregated or oversimplified representations of the eye-tracking data or require significant 5 

computational resources for long-term driving scenario analysis. To address these, this paper reviews 6 

existing eye-tracking data analysis methods and presents a new statistical pattern-based analytics 7 

approach. The proposed method extracts unique and representative visual scanning patterns of drivers by 8 

leveraging a novel time series data analytics technique, namely distance profile. The proposed method has 9 

several advantages in analyzing eye-tracking data from driving scenarios: (i) computational efficiency to 10 

analyze long-term driving scenarios; (ii) minimization of manual pre-processing required to simplify or 11 

summarize eye-tracking data; and (iii) pattern extraction to provide an intuitive and detailed 12 

understanding of driving behaviors. This new method seeks to complement and enrich conventional eye-13 

tracking data analysis by offering a novel and detailed view of the data. A case study on the real-world 14 

eye-tracking data is further conducted, where we demonstrate the feasibility and applicability of the 15 

proposed approach, laying a strong foundation for future research in driving behavior analysis. 16 

Keywords: Driving behavior, Eye movement, Eye-tracking data analysis, Visual scanning patterns, 17 

Pattern extraction, Scan path  18 
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INTRODUCTION 1 

While driving is a routine activity that has been extensively researched, a large number of traffic 2 

fatalities (1), as well as the popularization of non-driving related activities and distractions in the vehicle 3 

have required ongoing efforts in understanding and facilitating safe driving practices. In various 4 

applications, including distracted driving (2), vehicle technology design and evaluation (3, 4), and vehicle 5 

technology training (5, 6), comprehending driver behavior is a crucial step in assessing driving 6 

performance in terms of safety and effectiveness. 7 

One important tool in studying driver behavior is the driver’s visual attention measured through 8 

eye tracking technology (7–10). Most driving studies use visual attention towards Areas of Interest (AOI), 9 

a representative area or object in the visual field, e.g., windshield, right mirror. AOIs can be specified 10 

before data collection or designated afterward to capture emergent items of interest and are typically 11 

created based on semantic information about the stimulus (11). AOIs provide various metrics such as the 12 

number of glances, glance durations, and percentage of time spent within each AOI. However, the 13 

application of AOIs may not always be optimal for analyzing driving tasks that involve dynamic scene 14 

changes. Specifying moving AOIs can be labor-intensive if conducted manually, or it may require 15 

specialized equipment or algorithms with limited applicability. Furthermore, there is a loss of data 16 

fidelity, as using large areas may not effectively capture the fine-grained details of gaze movements. For 17 

instance, considering the windshield as a single AOI could potentially fail to capture a driver’s gaze 18 

transition from a preceding vehicle to a traffic sign, as such gaze transition occurs within this one AOI. 19 

Driver visual attention scan paths are the particular sequence that the eyes travel over a scene that 20 

contains information about how people see. Scan paths may provide additional insights into the strategies 21 

that individuals use while driving. A few studies have examined driver scan paths, primarily using a 22 

sequence of AOIs. Braunagel et al. extracted a Driver-Activity Recognition (DAR) architecture using 23 

dynamic clustering and symbolic aggregate approximation patterns based on the sequence of AOIs (12). 24 

Navarro et al. examined different AOIs along scan paths to investigate sequences of visual scanning in 25 

manual and highly automated simulated driving (13). While several methods have been developed to 26 

handle scan paths without pre-defining AOIs in non-driving domains, such as education (14, 15) and 27 

clinical medicine (15), the direct application of these methods to driving tasks presents a unique 28 

challenge. The reason is that processing large amounts of gaze position data from driving tasks can be 29 

computationally expensive, given that eye-tracking data tends to be longer than that from non-driving 30 

tasks. 31 

To address these challenges, this paper presents a new statistical pattern-based analytics 32 

approach, designed to automatically extract meaningful visual scanning patterns of drivers that: 1) does 33 

not depend on pre-defined AOIs, 2) is computationally efficient, and 3) can be applied to understanding 34 

fundamental driving research questions. The extracted visual scanning patterns serve as valuable tools for 35 

researchers seeking to comprehend various driver behaviors influenced by factors like fatigue, gender, or 36 

age. By doing so, it can contribute to the training and education of drivers’ safety awareness and enhance 37 

their driving performance. This paper provides a review of existing eye-tracking analysis methods and 38 

focuses on examining the technical aspects and feasibility of the newly proposed approach, along with its 39 

potential applications, without numerically comparing it with existing approaches. The paper aims to 40 

present an initial idea to showcase the viability of this innovative approach for validation and trial 41 

purposes to support the development of future methods for comparing and classifying drivers’ visual 42 

attention behavior. 43 

 44 

RELATED WORK 45 

Visual Attention and Eye Movement Measures in Driving 46 

There exists a rich literature on the analysis of visual attention and eye movements in driving tasks. 47 

Common visual attention analysis measures used in driving and their definitions are shown in Table 1 48 

(4). Fixation is a widely used measure in driving-related tasks that are characterized by their position (10, 49 

16) and duration (10, 17). For example, Wang et al. conducted a study where they utilized the time to first 50 

fixation and first fixation duration to investigate the design of a head-up display (18). The transition time 51 
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(10), the distance between fixation, and dwell time (18) have been employed to examine the correlation 1 

between various fixations. Total glance duration and percent of glance duration are used to understand 2 

drivers’ eye behavior before lane changing (19). The number of AOIs (17, 20) or the frequency of AOI 3 

visits (13) is commonly employed to differentiate scan paths at the semantic level. Visual transition 4 

probability between different AOIs and visual stationary probability of different AOIs can also show how 5 

much attention the driver pays to different semantic information (21). Saccades, which is the brief 6 

movement of the eyes between fixations (4, 22), have also been used to understand visual scanning 7 

behavior. Ahmad et al. examined the number and duration of saccadic eye movements to study the 8 

impacts of illuminance on eye gaze movement during driving (23).  9 

 10 

TABLE 1 Visual Attention Analysis Measures Widely Used in Driving Tasks (4) 11 

Terms Definitions Examples from 

literature 

Direction of gaze The AOI to which the eyes are directed. (10, 16) 

Dwell time The sum of all consecutive fixations and saccades within the 

AOI between transitions to other AOIs. 

(18) 

Glance/Glance 

duration 

The maintaining of visual gaze within an AOI, bounded by 

the perimeter of the AOI; comprised of at least one fixation 

and a transition to or from the AOI. 

(10, 17) 

Glance frequency The number of glances to an AOI within a sample interval 

where each glance is separated by at least one glance to a 

different AOI. 

(13, 17, 19, 20) 

Glance location 

probability 

The probability that the eyes are fixated at an AOI (or set of 

related AOIs) during a sample interval. This would be 

defined as the number of glances to an AOI divided by the 

number of glances to all AOIs in the sample. 

(21) 

Link value 

probability 

The probability of a glance transition between two different 

locations. The link value probability between AOIs A and B 

is defined as the number of glance transitions from A to B 

plus the number of glance transitions from B to A divided 

by the total number of glance transitions between all pairs of 

locations in the sample interval time. 

(21) 

Total Eyes Off Road 

Time 

The summation of all glance durations to all AOIs other 

than the road scene ahead during a sample interval. 

(20) 

Total glance time The summation of all glance durations to an AOI (or set of 

related AOIs) during a sample interval. 

(19) 

Transition time The duration of a transition. (10) 

 12 

Statistical methods and machine learning algorithms are often used to further analyze the 13 

frequency of various measures, find the statistical difference among subjects, or classify and categorize 14 

multiple subjects. Wang et al. examined the effect of animation and borders on several measures related 15 

to visual warnings through generalized linear models (18). Lethaus et al. performed a Markov analysis on 16 

the transition probabilities and percentage of fixations to explore the specific maneuvers employed by 17 

individuals during driving (24). Muttart et al. compared the glancing behavior of motorcyclists and car 18 

drivers at intersections using statistical methods (25). Deng et al. used the acquired environment data and 19 

measures as features, and applied the Random Forest (RF) algorithm to distinguish driving behaviors (9). 20 

Brishtel et al. used multiple measures as features to train the machine learning model to classify driving 21 
modes (10). 22 
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While these measures provide an overview of a driver’s visual attention, they often do not 1 

provide a temporal dimension to the analysis. In the next subsection, we will focus on the scan paths, 2 

which will allow us to not only understand where the drivers are looking but also the sequence in which 3 

they process the visual information.  4 

 5 

Scan Path Analysis 6 

Scan paths, defined as the trajectories (paths) of the eyes when scanning the visual scene, stand out 7 

among various measures as a means to explain the dynamic sequential information of eye movement. To 8 

form a foundation for the proposed method, this subsection will review established scan path-based 9 

methods, including those not explicitly designed for driving tasks. 10 

In real-world applications, it is crucial to accurately compare different scan paths and measure 11 

their similarities. This is often done by extracting diverse features, including vectors, directions, lengths, 12 

positions, and durations (26). Scan path-based methods can be broadly categorized into two main groups, 13 

depending on whether they simplify scan paths through discrete representations or not.  14 

 15 

Discrete Representation-based Methods 16 

Existing methods often simplify scan paths by transforming the fixation sequences into string-based 17 

(discrete) representations to achieve better computational efficiency. This can be done by defining 18 

discrete AOIs onto the stimulus space or using symbolic representation approaches (e.g., SAX 19 

representation) to assign each fixation to a character based on its location. 20 

One commonly utilized method to compare simplified scan paths is the Levenshtein distance 21 

(27). However, this method has limitations regarding the ordinal information and the spatial position of 22 

fixations, as two spatially close fixations can be assigned to different characters. ScanMatch is a more 23 

advanced adaptation of Levenshtein distance using the Needleman–Wunsch algorithm (28), which 24 

addresses this issue and incorporates the duration of the fixations in aligning and comparing scan paths. 25 

SubsMatch examines the frequency of exploratory eye movements and attention shifts, which is 26 

useful for comparing scan paths in interactive scenarios like simulated driving (12, 29). SubsMatch 27 

utilizes the SAX representation where each fixation is assigned to a character based on the slice of equi-28 

probabilistic data it falls into. The number of occurrences of each substring is stored in a hash table to 29 

compute the dissimilarity between two scan paths. 30 

SubsMatch 2.0 adds machine learning techniques to SubsMatch, by classifying eye movements 31 

based on sequence-sensitive features extracted from scan paths (30). The frequencies of substrings are 32 

converted to the N-Gram feature and indexed to create large and sparse matrices of feature counts, which 33 

are normalized to represent feature occurrence frequencies. The method utilizes a support vector machine 34 

(SVM) for classification. Both SubsMatch and SubsMatch 2.0 were applied to the eye-tracking data from 35 

driving sessions to evaluate the fitness to drive. 36 

A similar approach to SubsMatch 2.0 is MinHash (31). After aggregating N-Gram scanned 37 

subsequences in a dictionary, this method compares the minimal response of a set of hash functions over 38 

the dictionary, which involves repeated comparisons of randomly selected subsequences. The resulting 39 

frequencies are then utilized to estimate the Jaccard index, measuring the similarity between two scan 40 

paths. Unlike SubsMatch designed for dynamic scenarios, this approach is widely used in clustering and 41 

classifying documents.  42 

Despite their usefulness, the main limitation of these methods lies in the process of discretizing 43 

fixations into characters as the exact spatial locations of fixations are not preserved. This implies that the 44 

performance of further analysis will be sensitive to the quality of discretization results which often require 45 

careful parameter tuning and might not be applicable across various types of eye-tracking data. 46 

 47 

Continuous Representation-based Methods 48 

In contrast to the methods that rely on discretization or string-based representations of scan paths, some 49 

approaches directly leverage fixation locations (e.g., X and Y coordinates). Their goal is to find an 50 

optimal mapping to match the closest neighboring fixations between two scan paths. The mapping results 51 
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are then used to quantify the similarity between scan paths or identify patterns that are common or unique 1 

to specific groups. 2 

Eyenalysis relies on a geometric representation of eye-tracking data (32). The method aims to 3 

establish mappings between fixations in one scan path and at least one fixation in another scan path, 4 

aiming to minimize the normalized sum of distances associated with all mappings. This summation serves 5 

as an overall similarity measure between two scan paths. This approach also captures fixation duration 6 

information. However, the main challenge is assigning proper weights to individual dimensions. 7 

MultiMatch captures measures of shape, direction, and length of a scan path in addition to 8 

fixation position and duration (26). After being simplified through the clustering of fixations within a 9 

given directional threshold, the scan paths are temporally aligned based on their shape, which reduces the 10 

sensitivity to small temporal or spatial variations. Shape, length, position, and direction similarities are 11 

calculated and averaged over scan paths. MultiMatch provides a comprehensive evaluation of scan path 12 

similarity as each measure captures a unique component of the scan path. Yet, it remains challenging to 13 

determine which measure, or a set of measures, is most appropriate in a given scenario. 14 

In literature, limited research has been dedicated to studying the spatial trajectory of individual 15 

fixations movement. In addition, most existing methods have high computational costs, making them 16 

unsuitable for long-term driving scenario analysis. There is a need for further research that specifically 17 

addresses these issues. 18 

 19 

PROPOSED METHOD 20 

Definition of Visual Scanning Patterns 21 

As reviewed in the previous section, most of the existing studies have used aggregated or simplified 22 

measures directly obtained from the eye-tracking data. These measures are limited in providing fine-23 

grained information about driving behaviors. The aggregation of information in these measures may mask 24 

some of the differences between groups of drivers that may be useful for classification and categorization. 25 

Moreover, while scan paths provide additional sequential information about the driver’s gaze movements, 26 

many of the existing methods are limited in measuring the similarity between two scan paths in driving 27 

tasks, where the length of the scan path is relatively long, and a majority of the data represents routine 28 

driving without notable stimulus events.  29 

To address these problems, the proposed work will directly use gaze locations (continuous), 30 

instead of relying on subsequences of AOIs (discrete), and focus on “patterns” that appear throughout the 31 

scan path. Specifically, this work defines patterns as unique and representative visual scanning behaviors 32 

of drivers, e.g., checking the speedometer, gazing at the right side of the road, and seeking to identify and 33 

locate. Given that the gaze movements can be viewed as two-dimensional time series data (i.e., X and Y 34 

coordinates of gaze locations), the defined patterns correspond to short subsequences within the time 35 

series data. These subsequences should be significantly different from the common states of the entire 36 

sequence, e.g., looking at the forward center, and thus characterize distinct visual scanning behaviors.  37 

The distinctiveness (uniqueness) of a subsequence can be straightforwardly calculated by 38 

Euclidean distances between this subsequence and all other subsequences in the entire time series. A 39 

subsequence whose sum of these Euclidean distances is large will be selected as a pattern. Nevertheless, 40 

given the considerable length of time series data in driving tasks, it poses a significant challenge to the 41 

scalability and computational efficiency of the method. In the next subsection, we will introduce novel 42 

time series data analysis concepts used in the identification of the defined patterns and addressing these 43 

computational issues. 44 

 45 

Distance Profile 46 

Our approach is built upon the algorithm designed for all-pairs-similarity-search of time series 47 

subsequence (33). The primary goal of this algorithm is to compute the dissimilarities (Euclidean 48 

distances) between all pairs of subsequences within a given time series.  49 

Formally, a distance profile 𝐷𝑖  is defined as a vector of the Euclidean distances between the 𝑖th 50 

query subsequence and each subsequence in the entire time series. Suppose 𝑇𝑖,𝑚 is a subsequence of a 51 
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time series 𝑇 of length 𝑚 starting from position 𝑖, i.e., 𝑇𝑖,𝑚 = [𝑡𝑖 , 𝑡𝑖+1,… , 𝑡𝑖+𝑚−1], where 𝑇 =1 

[𝑡1, 𝑡2, … , 𝑡𝑛]. Given a query subsequence, we can “slide” a window of length 𝑚 across 𝑇, to generate all 2 

𝑛 −𝑚 + 1 subsequences of length 𝑚 to be compared with the query. We compute the Euclidean 3 

distances between the query subsequence (highlighted as red in Figure 1) and each subsequence of 𝑇 4 

(highlighted as orange in Figure 1) to form a distance profile 𝐷𝑖  (last row in Figure 1). This process 5 

results in a collection of pairwise Euclidean distances for each query subsequence, forming a distance 6 

profile. The computational cost to obtain distance profiles can be significantly reduced by using the 7 

MASS algorithm, which efficiently produces all the distances between the query to the subsequences of 8 

an entire time series through the Fast Fourier Transform (FFT) (34). 9 

 10 

  11 
 12 

Figure 1 Schematic diagrams of distance profile computation. The red and orange boxes represent 13 

the subsequences to be compared. The last row represents the distance profile consisting of the 14 

Euclidian distances obtained from the comparison between the query and each subsequence. 15 

 16 

In the context of the proposed approach, if the sum of the values in the distance profile of a given 17 

query subsequence is large, it indicates that this subsequence is unique (i.e., significantly different from 18 

other subsequences in the entire time series). For multi-dimensional time series data, such as gaze 19 

location data with X and Y coordinates, separate distance profiles can be created and then combined, 20 

accounting for all dimensions. While distance profiles have been studied in identifying meaningful 21 

patterns and anomalies within the time series data (35), such as pedestrian counting data or electrical 22 

power demand data, to the best of our knowledge, it has not been explored to study visual scanning 23 

patterns.  24 

 25 

Visual Scanning Pattern Analysis 26 

The previous section elaborates on how the distance profile can be used to identify unique visual scanning 27 

patterns (i.e., distinct subsequences) from the eye-tracking data. Here, we will explain how the proposed 28 

method leverages this to iteratively identify multiple patterns and their similar occurrences.  29 

In each iteration, the first step is to find a prototypical pattern. This can be done by finding the 30 

query subsequence with the largest sum of the distance profile. The second step is to locate similar 31 
occurrences of the identified prototypical pattern. A small distance value between a subsequence and the 32 

prototypical pattern indicates that this subsequence could be another occurrence of the prototypical 33 
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pattern. In other words, we locate small values in the distance profile of the prototypical pattern to find its 1 

similar occurrences. A subsequence whose distance from the prototypical pattern is below a certain 2 

threshold is considered as another occurrence of the same pattern. The threshold can be chosen using the 3 

quantile value of the distance profile (e.g., the 5th percentile of the distance profile). After identifying the 4 

pattern and its occurrences in the time series, we replace these segments with NA (i.e., not applicable) 5 

values before proceeding to the next iteration and repeating these steps. This is to avoid identifying 6 

another occurrence of the 𝑘th pattern as the 𝑘 + 1th pattern.  7 

In the numerical study, we also observe that dynamically adjusting the threshold value over 8 

iterations results in better performance. Specifically, as we proceed from the patterns with larger 9 

movements to those with smaller movements, we can incrementally increase the percentile over 10 

iterations, e.g., linearly raising it from the 1st percentile to the 10th percentile over 10 iterations. As we 11 

proceed, the increasing threshold allows us to be more lenient in identifying similar occurrences of a 12 

given pattern. 13 

 14 

NUMERICAL STUDY 15 

To illustrate the application of this method to the driving data, we present the results drawn from 16 

a single participant’s drive from an experiment. This section includes the visualization of the obtained 17 

patterns and the corresponding scan paths and presents derived insights into driving behaviors.   18 

 19 

Data Set and Data Collection  20 

In order to evaluate the feasibility of the proposed approach, eye-tracking data from a previous driving 21 

simulator study (5) was used. The data from this experiment examined the effects of different types of 22 

adaptive cruise control (ACC) training protocols on driving performance and visual attention allocation 23 

during simulated drives for younger and older drivers. Two types of training protocols were used: basic 24 

training, consisting of text content similar to what is found in a typical owner’s manual, and 25 

comprehensive training, consisting of the basic training content with the addition of information about the 26 

driver’s roles and responsibilities and a description of the tasks that are needed while driving with ACC. 27 

A short description of the methods used in the paper is provided below for context, with additional details 28 

found in (5).  29 

 30 

Participants 31 

A total of 40 participants (n=20 younger adults, ages 18-26; n=19 older adults, ages 65+) took part in the 32 

simulator experiment. All participants were screened to ensure no cognitive impairment or other medical 33 

comorbidities; had normal or normal-to-corrected vision and had a valid license and drove within the last 34 

three months. Participants in both age groups were randomly allocated to a training condition (basic vs. 35 

comprehensive) so that there were roughly equal participants in each group. The research project received 36 

ethical approval from the UF Institutional Review Board (IRB#: 201801988). 37 

 38 

Apparatus 39 

The experiment was conducted in a Realtime Technologies Inc. (RTI; Royal Oak, MI) RDS-2000 fixed-40 

base driving simulator. The simulator consisted of a full vehicle body, with a 180-degree field of view 41 

display in front of the vehicle, an additional display positioned behind the vehicle, and two displays for 42 

each of the side mirrors. A custom-developed ACC system with a fixed headway distance (2.2 seconds 43 

based on Toyota’s Safety Sense system middle setting) was used in the simulated drives. 44 

A Tobii Pro 2 (Tobii Technology AB, Sweden) head-mounted eye-tracker was used to capture 45 

visual attention. These glasses feature two eye cameras per eye and a full HD scene camera, providing an 46 

82° horizontal and 52° vertical field-of-view. The eye-tracking system recorded data at a rate of 50 Hz 47 

and captured the front scene video at 25 frames per second. Eye-tracking data from the glasses were 48 

captured using Ergoneers’ D-Lab software (Ergoneers, Germany) at 60 Hz. D-Lab allowed for the 49 
automatic detection of AOIs through the use of fiducial markers located in the real-world (Figure 2). The 50 
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software would detect these markers using computer vision, and AOIs could be defined relative to the 1 

positions of the markers. 2 

 3 

 4 
 5 

Figure 2 The gaze that falls on the AOI of the windshield is automatically detected. The three 6 

fiducial markers at the top and in the center locate the AOI of the windshield, and the fiducial 7 

markers at the bottom locate the AOI of the dashboard. 8 

 9 

Driving Scenarios and Visual Attention Allocation 10 

During the experiment, participants completed a total of seven experimental drives along a four-lane road 11 

of approximately 3.7 km with multiple intersections. Two of the drives were manual drives with no ACC, 12 

two were with ACC, and one was a “failure” drive where the operational domain of the ACC was 13 

exceeded (a tire was placed in the path of travel that would not be detected by the ACC), and finally, there 14 

were two post-failure ACC drives. A lead vehicle was present during each of the drives, which traveled at 15 

speeds that varied throughout the drive but were also tethered to the participants’ vehicle to ensure that a 16 

lead vehicle was always present. The speed limit changed throughout the course of the drive, requiring 17 

participants to monitor for speed limit changes through signage and adjust their ACC’s set speed 18 

accordingly. Participants were also expected to monitor the traffic lights at intersections, as the ACC is 19 

not able to adjust its speed in response to changes to the lights. Thus, within each of the drives, 20 

participants were expected to visually scan the environment for a number of important external cues, and 21 

the degree to which they scanned for these events was hypothesized to depend on their understanding of 22 

the limitations and capabilities of the ACC. 23 

 24 

Data Set Characteristics 25 

The data collected from the Tobii Pro Glasses 2 and D-Lab included various variables associated with the 26 

pupil position of the left and right eyes, gaze direction of the left and right eyes, gaze position, and 27 

corresponding AOI information. For our analysis, we focused on specific variables about gaze position 28 

and corresponding AOI information, which encompassed the coordinates of the gaze position on the X 29 

and Y axes, as well as whether the fixation fell within the designated AOI regions, including the 30 

windshield, dashboard, rearview mirror, left side mirror, and right side mirror areas. The X (Y) coordinate 31 

of the gaze location is normalized between 0 and 1, representing a range from left (bottom) to right (top). 32 

These variables corresponded to the eye-tracker’s estimates of gaze location within the video footage 33 

captured by the scene camera. The scene camera was located on the glasses and would represent the 34 
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participants’ current field of view. Thus, the variables represent the location of the gaze relative to the 1 

participant’s field of view (e,g, relative to their head position). 2 

Although it would be ideal to have gaze positions in relation to the real-world coordinates, 3 

gathering such data without calibration and anchoring to physical objects may be challenging and more 4 

prone to errors. Hence, we initially evaluated our approach using data within the scene-camera space. The 5 

benefits and limitations of this approach will be discussed in the discussion section.  6 

 7 

Visual Scanning Pattern Identification 8 

In this and the following subsections, the results are based on an older driver who received basic training 9 

and performed manual driving without ACC. The proposed method is applied to identify 10 distinct 10 

patterns from the eye-tracking data. The sequence length is set to 0.7 seconds. The identification of 10 11 

patterns and their occurrences takes 7.4 seconds on an Intel Core i7-1265U 1.80-GHz processor with 16-12 

GB RAM. For the first two patterns, Figures 3 (a) and (b) illustrate the locations of the prototypical 13 

patterns (yellow), with their multiple occurrences (red) and distance profiles (last row). The results show 14 

that the proposed method successfully identifies distinct scanning behaviors along with their similar 15 

occurrences throughout the entire sequence. However, it is observed that both Patterns #1 and #2 16 

represent similar behaviors (i.e., a small jump in the X coordinate and a large drop in the Y coordinate, 17 

indicating a down-right scan path), suggesting that the threshold is underestimated. Note that if an 18 

identified prototypical pattern has fewer than 5 occurrences, this pattern is discarded to ensure that each 19 

pattern represents a repetitive behavior of a driver. Figure 4 shows the final segmentation results after 20 

identifying and locating 10 patterns. We can see the diversity of visual scanning behaviors and each 21 

pattern’s multiple occurrences.  22 

 23 

 24 
(a) 25 

 26 

 27 
(b) 28 

 29 

Figure 3 Illustration of the locations of the identified prototypical pattern (yellow) and its 30 

occurrences (red) and the distance profile of the pattern (last row). (a) Pattern # 1 and (b) Pattern 31 

#2. The blue horizontal line in the distance profile plot shows the threshold to identify multiple 32 

occurrences.  33 
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 1 

 2 
 3 

Figure 4 Segmentation results using 10 patterns identified by the proposed method. Each pattern is 4 

represented by a different color. 5 

 6 

Visual Scanning Pattern Visualization 7 

Figure 5 provides the visualization of each prototypical pattern. Figures 6 (a) and (b) represent the visual 8 

scanning behaviors corresponding to Pattern #1 and #3, respectively. We can easily interpret that Pattern 9 

#1 corresponds to checking the speedometer (dashboard) and Pattern #3 corresponds to observing the 10 

scenery on the right side (buildings, trees, etc.). Although Pattern #4 displays a scan path visualization 11 

similar to Patterns #1 and #2, it is observed that its fixation duration is significantly shorter than those of 12 

Patterns #1 and #2. Most of the patterns indicate the driver’s gaze shifting within the windshield AOI. It 13 

is worth noting that using the existing AOI-based methods, such gaze transitions within the windshield 14 

AOI would not be individually captured. Moreover, Patterns #9 and #10 indicate that the proposed 15 

method can capture and distinguish visual scanning behaviors that cover very small areas. This highlights 16 

the method’s effectiveness in detecting fine-grained and localized gaze behaviors in the eye-tracking data. 17 

In essence, all extracted patterns encompass diverse eye movements and fixations occurring across and 18 

within the AOIs. 19 

 20 

 21 
 22 

Figure 5 Scan paths of the identified 10 prototypical patterns. The color represents the AOIs (red: 23 

dashboard, green: windshield, grey: invalid). The opacity visualizes the chronology of eye 24 

movements, which gradually decreases from the initial gaze location to the final gaze location. The 25 

yellow dashed line shows the overall trajectory and direction of each prototypical pattern. 26 
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(a) 

 
(b) 

 1 

Figure 6 Example of the scanning behavior shown in (a) Pattern #1, the driver is checking the 2 

speedometer and (b) Pattern #3, the driver is observing the building on the right side. 3 

 4 

Average Visual Scanning Pattern 5 

Figure 7 visualizes multiple occurrences of Patterns #2 and #3. The results for Pattern #1 are similar to 6 

those for Pattern #2, yet they are omitted here, as there are a total of 16 occurrences of Pattern #1. We can 7 

see that multiple occurrences of a pattern exhibit similarities with slight variations. Note that different 8 

occurrences of the same pattern may vary in length as we group consecutive subsequences assigned to the 9 

same pattern into one occurrence of the pattern. 10 

 11 

 12 
 13 

Figure 7 Multiple occurrences of Patterns #2 and #3. The opacity visualizes the chronology of eye 14 

movements, the opacity gradually decreases from the initial gaze location to the final gaze location. 15 

 16 

To obtain the average of each pattern and its occurrences, Dynamic Time Warping (DTW) 17 

method (36) is used. DTW employs a “warping” operation to improve alignment between the varying 18 

length sequences. Figure 8 shows the resulting average behavior of each pattern. 19 

 20 
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 1 
 2 

Figure 8 The average scan paths of the identified 10 patterns and their occurrences. The color 3 

visualizes the chronology of eye movements from the initial gaze location (black) to the final gaze 4 

location (white). The yellow dashed line shows the overall trajectory and direction of each pattern. 5 

 6 

These results show the average patterns do differ slightly from the prototypical patterns identified 7 

previously. For example, manual inspection of Pattern 6 revealed that multiple occurrences that were 8 

classified as Pattern #6 actually vary in terms of gaze transition direction. These results suggest the 9 

necessity of a more systematic approach to determine the threshold for grouping similar occurrences or 10 

further post-processing in pattern identification. 11 

 12 

DISCUSSION 13 

In this section, we will outline the limitations of the proposed approach and several potential 14 

topics for future research. The first limitation of this paper is that our approach was demonstrated on eye-15 

tracking data from a single drive from one participant without comparative studies between different 16 

drivers or drives. The focus of this study was to demonstrate how our method is able to extract 17 

meaningful visual scanning patterns from the data. The next step will be to apply this method across 18 

multiple drivers and different situations. 19 

Furthermore, our case study also provided evidence that the pattern identification performance of 20 

the proposed method is sensitive to the threshold parameter. Further work is required for a more 21 

systematic approach to determine the threshold parameter considering the experiment’s design, dataset, 22 

and research questions. Also, the validity of the patterns is a human judgment right now, this is certainly a 23 

limitation when we have a large number of patterns that need to be validated. To support these efforts, we 24 

are developing a methodology to test the validity of these patterns after their extraction to determine 25 

whether the behaviors represented by these patterns genuinely represent particular kinds of drivers. 26 

In addition, in the case study, eye-tracking data was collected using a wearable eye tracker, which 27 

collects eye movement information relative to the scene camera. Thus, in this current analysis, we relied 28 

on gaze positional data that was relative to the head rather than the world. Transforming the gaze position 29 

to be relative to the vehicle will likely improve the accuracy of the method, but our current data analysis 30 

results show that the proposed approach is robust even while using position data that is relative to the 31 

head.  32 
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Finally, it is important to note that there are various factors affecting pattern extraction based on 1 

scan paths including the visual scanning environment, diverse driving characteristics, distinct driving 2 

states, and disparities among visual scanning devices. This poses a challenge to the generalization of this 3 

method for broader studies. Therefore, future research endeavors should focus on exploring ways to 4 

mitigate or eliminate these limitations when making comparisons among different scenarios. 5 

Future development of our proposed approach will involve the use of extracted patterns for the 6 

classification and detection of driving behaviors. This includes the classification of behaviors that exhibit 7 

similarity at the AOI level. The potential utility of these classifications may surpass existing methods for 8 

behavior classification and detection. Pattern extraction based on scan paths can benefit from 9 

incorporating other classification approaches, such as computer vision, to discern subtle distinctions 10 

among different patterns. Additionally, a suitable method for analyzing the degree of similarity between 11 

two scan paths will be explored. For example, the similarity can be quantified based on the frequency or 12 

locations of the shared patterns. 13 

 14 

CONCLUSION 15 

This work reviews existing eye-tracking data analysis methods and presents a novel approach for 16 

extracting driving visual scanning patterns. The proposed method identifies distinctive patterns by 17 

obtaining the distance profile of the scan path. By directly analyzing the scan path, this new method 18 

reveals the overall trends, semantics, and intricate differences in eye movement, surpassing the AOI-19 

based feature extraction method. The numerical study elaborates on the visualization of the obtained 20 

patterns and the scan paths of corresponding prototypical and average patterns and presents derived 21 

insights into driving behaviors. 22 
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